Heat Equation with a Radiation Boundary Condition

\[u_t(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 < x < \ell, \quad t > 0 \]
\[u(0,t) = 0, \quad u_x(1,t) + hu(1,t) = 0 \]
\[u(x,0) = \varphi(x) \]

1. Separate Variables

Look for simple solutions in the form

\[u(x,t) = X(x)T(t). \]

Substituting into (1) and dividing both sides by \(X(x)T(t) \) gives

\[\frac{\dot{T}(t)}{T(t)} = \alpha^2 \frac{X''(x)}{X(x)} \]

Since the left side is independent of \(x \) and the right side is independent of \(t \), it follows that the expression must be a constant:

\[\frac{\dot{T}(t)}{\alpha^2 T(t)} = \frac{X''(x)}{X(x)} = \lambda. \]

(Here \(\dot{T} \) means the derivative of \(T \) with respect to \(t \) and \(X' \) means means the derivative of \(X \) with respect to \(x \).) We seek to find all possible constants \(\lambda \) and the corresponding nonzero functions \(X \) and \(T \).

We obtain

\[X'' - \lambda X = 0, \quad \dot{T} - \alpha^2 \lambda T = 0. \]

The solution of the second equation is

\[T(t) = Ce^{\alpha^2 \lambda t} \]

where \(C \) is an arbitrary constant. Furthermore, the boundary conditions give

\[X(0)T(t) = 0, \quad X'(1) + hX(1)T(t) = 0 \quad \text{for all } t. \]

Since \(T(t) \) is not identically zero we obtain the desired eigenvalue problem

\[X''(x) - \lambda X(x) = 0, \quad X(0) = 0, \quad X'(1) + hX(1)T(t) = 0. \]

2. Find Eigenvalues and Eigenvectors

The next main step is to find the eigenvalues and eigenfunctions from (3). There are, in general, three cases:

(a) If \(\lambda = 0 \) then \(X(x) = ax + b \) so applying the boundary conditions we get

\[0 = X(0) = b, \quad 0 = X'(1) + hX(1) = a(1 + h) \quad \Rightarrow a = 0 \quad \text{unless } h = -1. \]

We conclude that \(\lambda_0 = 0 \) is note an eigenvalue unless \(h = -1 \).
(b) If \(\lambda = \mu^2 > 0 \) then
\[
X(x) = a \cosh(\mu x) + b \sinh(\mu x)
\]
and
\[
X'(x) = a\mu \sinh(\mu x) + b\mu \cosh(\mu x).
\]
Applying the boundary conditions we have
\[
0 = X(0) = a\mu \Rightarrow a = 0
\]
and
\[
0 = X'(1) + hX(1) = b(\mu \cosh(\mu) + h \sinh(\mu)) \quad \text{for} \quad b \neq 0 \quad \Rightarrow \tanh(\mu) = \frac{-\mu}{h}.
\]
This case is a bit more complicated depending on whether \(h \) is positive or negative. \(h \) positive corresponds to heat flowing out of the rod so there are no positive eigenvalues. There are also no positive eigenvalues for \(-1 < h < 0\). But for \(h < -1 \) we see that there is a single positive eigenvalue.

Consider the following alternative argument: If \(X''(x) = \lambda X(x) \) then multiplying by \(X \) we have \(X(x)X''(x) = \lambda X(x)^2 \). Integrate this expression from \(x = 0 \) to \(x = \ell \), apply integration by parts on the right and use \(X(0) = 0 \) and \(X'(1) = -hX(1) \).

We have
\[
\lambda \int_0^1 X(x)^2 \, dx = \int_0^1 X(x)X''(x) \, dx = -\int_0^1 X'(x)^2 \, dx - hX(1)^2 \bigg|_0^\ell.
\]
We conclude that
\[
\lambda = -\frac{\int_0^\ell X'(x)^2 \, dx + hX(1)^2}{\int_0^\ell X(x)^2 \, dx}
\]
and we see that \(\lambda \) is negative unless \(h \) is a large negative number. This calculation does not, however, give any real idea large \(\lambda \) needs to be. From here on we consider only the case \(h > 0 \).

(c) Finally, consider \(\lambda = -\mu^2 \) so that
\[
X(x) = a \cos(\mu x) + b \sin(\mu x)
\]
and
\[
X'(x) = -a\mu \sin(\mu x) + b\mu \cos(\mu x).
\]
Applying the boundary conditions we have
\[0 = X(0) = a \Rightarrow a = 0 \quad 0 = X'(1) + hX(1) = b(\mu \cos(\mu) + h \sin(\mu)) \]

From this we conclude
\[\tan(\mu) = -\frac{\mu}{h}. \]

By graphing the functions on the right and left on the same axis it is easy to see that there are infinitely many values \(\mu_n \) with
\[\frac{\pi}{2} < \mu_1 < \pi, \quad \frac{3\pi}{2} < \mu_2 < 2\pi, \]
and in general
\[\frac{(2n - 1)\pi}{2} < \mu_n < n\pi, \quad \text{and} \quad \mu_n \xrightarrow{n \to \infty} \frac{(2n - 1)\pi}{2}. \]

Thus we have eigenvalues and eigenfunctions
\[\lambda_n = -\mu_n^2, \quad X_n(x) = \sin(\mu_n x), \quad n = 1, 2, 3, \ldots. \quad (4) \]

From (2) we also have the associated functions \(T_n(t) = e^{\mu^2 \lambda_n t} \).

3. **Write as a Formal Sum** From the above considerations we can conclude that for any integer \(N \) and constants \(\{a_n\}_{n=0}^N \)
\[u_n(x, t) = \sum_{n=1}^N b_n T_n(t) X_n(x) = \sum_{n=1}^N b_n e^{\lambda_n t} \sin(\mu_n x). \]
satisfies the differential equation in (1) and the boundary conditions.

4. **Use Fourier Series to Find Coefficients** The only problem remaining is to somehow pick the constants \(b_n \) so that the initial condition \(u(x, 0) = \varphi(x) \) is satisfied. To do this we need a theory which is more general than Fourier series. This theory is called
Sturm-Liouville theory and we will discuss it a little bit later. The main thing is that it guarantees that, just as with Fourier series, we look for u as an infinite sum

$$u(x, t) = \sum_{n=1}^{\infty} b_n e^{\alpha x^2 \lambda_n t} \sin (\mu_n x)$$

and we seek $\{b_n\}$ satisfying

$$\varphi(x) = u(x, 0) = \sum_{n=1}^{\infty} b_n \sin (\mu_n x).$$

We claim (see proof at the end of the notes)

$$\int_0^1 X_n(x) X_m(x) \, dx = \int_0^1 \sin(\mu_n x) \sin(\mu_m x) \, dx = 0 \quad n \neq m \quad (5)$$

and

$$\int_0^1 X_n^2(x) \, dx = \int_0^1 \sin^2(\mu_n x) \, dx = \frac{(1 + h \cos^2(\mu_n))}{2} \equiv \frac{1}{\kappa_n} \neq 0 \quad (6)$$

so

$$\kappa_n = \frac{2}{(1 + h^{-1} \cos^2(\mu_n))} \xrightarrow{n \to \infty} 2.$$

Just as we did in our formal study of Fourier series, to find b_n multiply both sides of the formal series by $X_n(x)$ and integrate from 0 to 1:

$$\int_0^1 \varphi(x) \sin(\mu_n x) \, dx = \sum_{k=1}^{\infty} b_k \int_0^1 \sin(\mu_k x) \sin(\mu_n x) \, dx$$

$$= b_n \int_0^1 \sin^2(\mu_n x) \, dx = \frac{b_n}{\kappa_n}$$

Thus we find

$$b_n = \kappa_n \int_0^1 \varphi(x) \sin (\mu_n x) \, dx. \quad (7)$$

As an explicit example for the initial condition consider $\varphi(x) = x$. In this case (7) becomes

$$b_n = \kappa_n \int_0^1 x \sin (\mu_n x) \, dx = \kappa_n \int_0^1 x \frac{- \cos (\mu_n x)}{\mu_n} \, dx$$

$$= \kappa_n \left[\frac{x - \cos (\mu_n x)}{\mu_n} \right]_0^1 - \int_0^1 \frac{- \cos (\mu_n x)}{\mu_n} \, dx$$
\[\kappa_n \left[- \cos(\mu_n) \frac{1}{\mu_n} + \int_0^1 \cos(\mu_n x) \frac{1}{\mu_n} \, dx \right] \]

\[= \kappa_n \left[- \cos(\mu_n) + \frac{\sin(\mu_n)}{\mu_n^2} \right] \]

\[= \kappa_n (h + 1) \sin(\mu_n) \frac{1}{\mu_n^2} \]

where on the last step we have used

\[- \cos(\mu_n) = \frac{h \sin(\mu_n)}{\mu_n} \]

which follows from

\[\tan(\mu) = \frac{-\mu}{h} . \]

So finally we arrive at the solution

\[u(x, t) = \sum_{k=1}^{\infty} b_n e^{\alpha^2 \lambda_n t} \sin(\mu_n x). \] \hspace{1cm} (8)

Proof of Orthogonality and Derivation \(\kappa_n \)

First we obtain the desired formula for \(\kappa_n \).

\[\kappa_n^{-1} = \int_0^1 \sin^2(\mu_n x) \, dx = \frac{1}{2} \int_0^1 (1 - \cos(2\mu_n x)) \, dx \]

\[= \frac{1}{2} \left[x - \frac{\sin(2\mu_n x)}{2\mu_n} \right] \bigg|_0^1 = \frac{1}{2} \left[1 - \frac{\sin(2\mu_n)}{2\mu_n} \right] \]

\[= \frac{1}{2} \left[1 - \frac{\sin(\mu_n) \cos(\mu_n)}{\mu_n} \right] \]

\[= \frac{1}{2} \left[1 + h^{-1} \cos^2(\mu_n) \right] \]

where on the last step we have used

\[\frac{\sin(\mu_n)}{\mu_n} = -\frac{\cos(\mu_n)}{h} \]

which follows from

\[\tan(\mu) = \frac{-\mu}{h} . \]
Now we show orthogonality, i.e.,

\[\int_0^1 \sin(\mu_n x) \sin(\mu_m x) \, dx = 0 \quad \text{for} \quad n \neq m. \]

Recall that \(\sin(\mu_j x) = X_j \) and that

\[X_j'' = \lambda_j X_j, \quad X_j(0) = 0, \quad X_j'(1) = -h X_j(1), \quad j = n, m \]

so that

\[\lambda_n \int_0^1 X_n(x) X_m(x) \, dx = \int_0^1 X_n''(x) X_m(x) \, dx \]

\[= - \int_0^1 X_n'(x) X_m'(x) \, dx + X_n'(x) X_m(x) \bigg|_0^1 \]

\[= \int_0^1 X_n(x) X_m''(x) \, dx + [X_n'(x) X_m(x) - X_n(x) X_m'(x)] \bigg|_0^1 \]

\[= \lambda_m \int_0^1 X_n(x) X_m(x) \, dx + h [X_n(1) X_m(1) - X_n(1) X_m(1)] \]

\[= \lambda_m \int_0^1 X_n(x) X_m(x) \, dx \]

Therefore we can conclude

\[(\lambda_n - \lambda_m) \int_0^1 X_n(x) X_m(x) \, dx = 0 \]

and since \(\lambda_n \neq \lambda_m \) for \(n \neq m \) we have

\[\int_0^1 X_n(x) X_m(x) \, dx = 0. \]