Heat Equation Dirichlet-Neumann Boundary Conditions

\[u_t(x,t) = u_{xx}(x,t), \quad 0 < x < \ell, \quad t > 0 \]
\[u(0,t) = 0, \quad u_x(\ell,t) = 0 \]
\[u(x,0) = \varphi(x) \]

1. Separate Variables
Look for simple solutions in the form
\[u(x,t) = X(x)T(t). \]
Substituting into (1) and dividing both sides by \(X(x)T(t) \) gives
\[\frac{\dot{T}(t)}{T(t)} \frac{T(t)}{X(x)} = \frac{X''(x)}{X(x)} = \lambda. \]

(Here \(\dot{T} \) means the derivative of \(T \) with respect to \(t \) and \(X' \) means means the derivative of \(X \) with respect to \(x \).) We seek to find all possible constants \(\lambda \) and the corresponding non-zero functions \(X \) and \(T \).
We obtain
\[X'' - \lambda X = 0, \quad \dot{T} - \lambda T = 0. \]

The solution of the second equation is
\[T(t) = Ce^{\lambda t} \]
where \(C \) is an arbitrary constant. Furthermore, the boundary conditions give
\[X(0)T(t) = 0, \quad X'(\ell)T(t) = 0 \quad \text{for all } t. \]

Since \(T(t) \) is not identically zero we obtain the desired eigenvalue problem
\[X''(x) - \lambda X(x) = 0, \quad X(0) = 0, \quad X'(\ell) = 0. \]

2. Find Eigenvalues and Eigenvectors
The next main step is to find the eigenvalues and eigenfunctions from (3). There are, in general, three cases:
(a) If \(\lambda = 0 \) then \(X(x) = ax + b \) so applying the boundary conditions we get
\[0 = X(0) = b, \quad 0 = X'(\ell) = a \quad \Rightarrow a = b = 0. \]

Zero is not an eigenvalue.
(b) If $\lambda = \mu^2 > 0$ then
\[X(x) = a \cosh(\mu x) + b \sinh(\mu x) \]
and
\[X'(x) = a \mu \sinh(\mu x) + b \mu \cosh(\mu x). \]
Applying the boundary conditions we have
\[0 = X'(0) = a \mu \Rightarrow a = 0 \quad 0 = X'(\ell) = b \mu \cosh(\mu \ell) \Rightarrow b = 0. \]
Therefore, there are no positive eigenvalues.
Consider the following alternative argument: If $X''(x) = \lambda X(x)$ then multiplying by X we have $X(x)X''(x) = \lambda X(x)^2$. Integrate this expression from $x = 0$ to $x = \ell$. We have
\[\lambda \int_0^\ell X(x)^2 \, dx = \int_0^\ell X(x)X''(x) \, dx = -\int_0^\ell X'(x)^2 \, dx + X(x)X'(x) \bigg|_0^\ell. \]
Since $X(0) = X'(\ell) = 0$ we conclude
\[\lambda = -\frac{\int_0^\ell X'(x)^2 \, dx}{\int_0^\ell X(x)^2 \, dx} \]
and we see that λ must be less than or equal to zero.
(c) So, finally, consider $\lambda = -\mu^2$ so that
\[X(x) = a \cos(\mu x) + b \sin(\mu x) \]
and
\[X'(x) = -a \mu \sin(\mu x) + b \mu \cos(\mu x). \]
Applying the boundary conditions we have
\[0 = X(0) = a \mu \Rightarrow a = 0 \quad 0 = X'(\ell) = b \mu \cos(\mu \ell). \]
From this we conclude $\cos(\mu \ell) = 0$ which implies
\[\mu = \frac{(2n - 1)\pi}{2\ell} \]
and therefore
\[\lambda_n = -\mu_n^2 = -\left(\frac{(2n - 1)\pi}{2\ell}\right)^2, \quad X_n(x) = \sin(\mu_n x), \quad n = 1, 2, \ldots . \quad (4) \]
From (2) we also have the associated functions $T_n(t) = e^{\lambda_n t}$.

3. Write Formal Infinite Sum From the above considerations we can conclude that for any integer N and constants $\{b_n\}_{n=0}^N$
\[u_n(x, t) = \sum_{n=1}^N b_n T_n(t) X_n(x) = \sum_{n=1}^N b_n e^{\lambda_n t} \sin \left(\frac{(2n - 1)\pi x}{2\ell}\right). \]
satisfies the differential equation in (1) and the boundary conditions.
4. **Use Fourier Series to Find Coefficients** The only problem remaining is to somehow pick the constants a_n so that the initial condition $u(x,0) = \varphi(x)$ is satisfied. To do this we consider what we learned from Fourier series. In particular we look for u as an infinite sum

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{\lambda_n t} \sin \left(\frac{(2n-1)\pi x}{2\ell} \right)$$

and we try to find $\{b_n\}$ satisfying

$$\varphi(x) = u(x,0) = \sum_{n=1}^{\infty} b_n \sin \left(\frac{(2n-1)\pi x}{2\ell} \right).$$

But this nothing more than a Sine type expansion of the function φ on the interval $(0, \ell)$. Using

$$X_n(x) = \sin \left(\frac{(2n-1)\pi x}{2\ell} \right)$$

we have

$$\varphi(x) = \sum_{k=1}^{\infty} b_k X_k(x).$$

We proceed as usual by multiplying both sides by $X_n(x)$ and integrating from 0 to ℓ and using the orthogonality (described below in (6), (8)).

$$\int_0^{\ell} X_n(x)\varphi(x) \, dx = \sum_{k=1}^{\infty} b_k \int_0^{\ell} X_n(x)X_k(x) \, dx$$

which implies

$$b_n = \frac{2}{\ell} \int_0^{\ell} \varphi(x)X_n(x) \, dx. \quad (5)$$

orthogonality:

$$\int_0^{\ell} X_n(x)X_k(x) \, dx = \begin{cases} \frac{\ell}{2}, & n = k \\ 0, & n \neq k \end{cases}. \quad (6)$$

To see this recall that $X''_j = \lambda_j X_j$ and $X_j(0) = 0$, $X'_j(\ell) = 0$. First consider $n \neq k$ so $\lambda_n \neq \lambda_k$ and therefore

$$\lambda_n \int_0^{\ell} X_n(x)X_k(x) \, dx = \int_0^{\ell} X''_n(x)X_k(x) \, dx$$

$$= - \int_0^{\ell} X'_n(x)X'_k(x) \, dx + [X'_n(x)X_k(x)]_0^{\ell}$$

$$= \int_0^{\ell} X_n(x)X''_k(x) \, dx + [X'_n(x)X_k(x) - X_n(x)X'_k(x)]_0^{\ell}$$

$$= \lambda_k \int_0^{\ell} X_n(x)X_k(x) \, dx. \quad (7)$$
Therefore

\[(\lambda_n - \lambda_k) \int_0^\ell X_n(x)X_k(x) \, dx = 0 \Rightarrow \int_0^\ell X_n(x)X_k(x) \, dx = 0.\]

For \(n = k\) we have

\[\begin{align*}
\int_0^\ell X_n^2(x) \, dx &= \int_0^\ell \sin^2 \left(\frac{(2n - 1)\pi x}{2\ell} \right) \, dx \\
&= \frac{1}{2} \int_0^\ell \left[1 - \cos \left(\frac{(2n - 1)\pi x}{\ell} \right) \right] \, dx \\
&= \frac{\ell}{2} - \frac{1}{2} \left(\frac{\ell}{(2n - 1)\pi} \right) \sin \left(\frac{(2n - 1)\pi x}{\ell} \right) \bigg|_0^\ell \\
&= \frac{\ell}{2}. \quad (9)
\end{align*}\]

As an explicit example for the initial condition consider \(\varphi(x) = x\). Let us recall that \(\mu_n = \left(\frac{(2n - 1)\pi}{2\ell} \right)\)

\[b_n = \frac{2}{\ell} \int_0^\ell \varphi(x)X_n(x) \, dx = \frac{2}{\ell} \int_0^\ell x \sin(\mu_n x) \, dx\]

\[= \frac{2}{\ell} \int_0^\ell x \left(-\cos \left(\frac{\mu_n x}{\mu_n} \right) \right) ' \, dx\]

\[= \frac{2}{\ell} \left[-x \frac{\cos(\mu_n x)}{\mu_n} \bigg|_0^\ell + \int_0^\ell \frac{\cos(\mu_n x)}{\mu_n} \, dx \right]\]

\[= \frac{2}{\ell} \left[-\ell \frac{\cos(\mu_n \ell)}{\mu_n} + \frac{\sin(\mu_n x)}{\mu_n^2} \bigg|_0^\ell \right]\]

\[= \frac{2}{\ell} \left[-\ell \frac{\cos((2n - 1)\pi/2)}{\mu_n} + \frac{\sin((2n - 1)\pi/2)}{\mu_n^2} \right]\]

\[= \frac{8\ell(-1)^{n+1}}{(2n - 1)^2\pi^2}\]

We arrive at the solution

\[u(x, t) = \frac{8\ell}{\pi^2} \sum_{n=1}^\infty \frac{(-1)^{n+1}}{(2n - 1)^2} e^{\lambda_n t} \sin(\mu_n x). \quad (10)\]